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Accurate weed identification is a prerequisite for implementing site-specific weed management in crop
production. Palmer amaranth (Amaranthus palmeri S. Wats.) and redroot pigweed (Amaranthus retroflexus
L.) are two common pigweeds that reduce soybean [Glycine max (L.) Merr.] yields in the southeastern
United States. The objective of this study was to evaluate leaf multispectral reflectance data as input into
the random forest machine learning algorithm to differentiate three soybean varieties (Progeny 4928,
Progeny 5160, and Progeny 5460) from Palmer amaranth and redroot pigweed. Leaf reflectance
measurements of soybean, Palmer amaranth, and redroot pigweed plants grown in a greenhouse were
collected with a plant contact probe attached to a hyperspectral spectroradiometer. Data were obtained
at the vegetative growth stage of the plants on two dates, June 30, 2014, and September 17, 2014. The
hyperspectral data were aggregated to sixteen multispectral bands (viz. coastal, blue, green, yellow,
red, red-edge, near-infrared 1 and 2, and shortwave-infrared 1-8) mimicking those recorded by the
WorldView-3 satellite sensor. Classifications were binary, meaning one soybean variety versus one weed
tested per classification. Random forest classification accuracies were determined with a confusion
matrix, incorporating user’s, producer’s, and overall accuracies and the kappa coefficient. User’s,
producer’s, and overall accuracies of the soybean weed classifications ranged from 93.8% to 100%.
Kappa results (values of 0.93-0.97) indicated an excellent agreement between the classes predicted by
the models and the actual reference data. Shortwave-infrared bands were ranked the most important
variables for distinguishing the pigweeds from the soybean varieties. These results suggest that random
forest and leaf multispectral reflectance data could be used as tools to differentiate soybean from two pig-
weeds with a potential application of this technology in site-specific weed management programs.
Published by Elsevier B.V.
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1. Introduction

Amaranthus species, commonly known as pigweeds, reduce
crop yield and quality throughout the United States and Canada.
Their aggressive growth habit allows pigweeds to outgrow and
out-compete crops for water and soil nutrients (Teyker et al.,
1991; Blackshaw and Brandt, 2008). Pigweed populations ranging
from one to three plants per three meter of row have caused signif-
icant yield losses in corn (Zea mays L.) and soybean [Glycine max
(L) (Merr.)] (Klingman and Oliver, 1994; Knezevic et al., 1994;
Massinga et al., 2001). In agricultural systems, fertilizer added to
the soil increases pigweeds biomass and seed production (Egley,
1986). Pigweeds produce numerous seeds that are viable for three
to eight years depending on climate and burial depth in soil. They
readily adapt to different crop production systems (including crop
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rotations) and control tactics, and evolved resistance to herbicides
(Brainard et al., 2007; Volenberg et al., 2007; Fugate, 2009).
Various management strategies are available for producers to use
for combating pigweeds. To effectively implement weed
management strategies, reduce the use of herbicides, and protect
the environment, producers need effective ways to distinguish
pigweeds from crops.

Automatic classification methods using plant light reflectance
measurements as inputs have shown promise as tools to discrimi-
nate crops from weeds (Koger et al., 2003; Smith and Blackshaw,
2003; Yang et al, 2004; Gomez-Casero et al, 2010;
Nieuwenhuizen et al., 2010; de Castro et al., 2012; Deng et al.,
2014, 2016). Neto et al. (2006) used elliptic fourier and discrimi-
nant analyses and multispectral reflectance data to identify young
soybean, sunflower (Helianthus pumilus L.), redroot pigweed
(Amaranthus retroflexus L.), and velvetleaf (Abutilon theophrasti
Medicus) plants based on leaf shape. Zhang et al. (2012)
distinguished tomato (Solanum lycopersicum L.) plants from black
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nightshade (Solanum nigrum L.) and redroot pigweed with canoni-
cal Bayesian classifiers and canopy hyperspectral reflectance mea-
surments. Deng et al. (2016) showed that leaf hyperspectral
reflectance data subjected to Bayesian discriminant analysis could
be used to distinguish weeds from seedling cabbages (Brassica
oleracea L.). They used principal component analysis to reduce
the dataset to eight spectral bands prior to using the Bayesian
discriminant analysis. Eddy et al. (2014) used artificial neural net-
works and hyperspectral imagery to distinguish wild oats (Avena
fatua L.) and redroot pigweed from field pea (Pisum sativum L.),
spring wheat (Triticum aestivum L.), and canola (Brassica spp. L.).
They reduced a 61-band hyperspectral dataset to 7 bands and
achieved classification accuracies ranging from 88% to 94%. The
7-band dataset results were nearly equivalent to the full 61-band
hyperspectral accuracies ranging from 89% to 95%. Deng et al.
(2014) showed that support vector machines, artificial neural net-
works, and decision tree algorithms could differentiate crops and
weeds better in 350-760 nm wavelength range than in the
350-2500 nm range. Nevertheless, with the successes of automatic
classification methods and plant light reflectance data for weed
crop discrimination, gaps still exist in applications of those
technologies for weed detection in agricultural fields. For example,
which algorithm(s) work best, should multispectral or hyperspec-
tral data be used as input for crop weed discrimination, and does
crop variety affect the ability of the algorithm(s) to differentiate
the crop from the weed? These are just a few of the many ques-
tions that remain unanswered.

Ensemble machine learning techniques employ a set of
classifiers in the decision process, or a combination of different
classifiers built on rule-based approaches including maximum
voting, product, sum, Bayesian rule or on an iterative error
minimization technique to assign an unknown sample to a class
(Steele, 2000; Breiman, 2001; Mountrakis et al., 2009; Ghimire
et al., 2010). They are gaining popularity as classifiers because
the ensemble of classifiers performs well together, leading to
ensemble methods being highly reliable classifiers and achieving
accuracies equivalent to or better than other classifiers (Steele,
2000; Kotsiantis and Pintelas, 2004; Gislason et al., 2006; Sesnie
et al., 2008; Ghimire et al., 2010).

Random forest (Breiman, 2001), an ensemble technique, has
been applied extensively to multispectral and hyperspectral satel-
lite imagery by researchers to produce land-cover maps (Pal, 2005;
Lawrence et al., 2006; Chan and Paelinckx, 2008; Sesnie et al.,
2008; Ghimire et al., 2010). It ranks as one of the best family of
classifiers (Fernandez-Delgado et al., 2014). Random forest popu-
larity continues to grow because the algorithm is fully automated.
Analysts can design powerful models with little experience in
using the machine learner, and it is not necessary to have an inde-
pendent external accuracy assessment dataset (Breiman, 2001;
Lawrence et al., 2006). That characteristic of random forest is an
advantage, especially in circumstances of small sample sizes.

The random forest algorithm also produces a variable impor-
tance ranking, meaning it ranks each variable’s prominence in
the classification model. This information is valuable to the user
in selecting variables to build simpler, more readily interpretable
models (Liaw and Wiener, 2002). Other machine learning algo-
rithms do not have the ability to produce variable rankings. Quite
often, another algorithm is used to create the variable ranking, and
then the selected variables are evaluated by the preferred learner.
For a more detailed description of the random forest, consult
Breiman (2001).

Presently, no information is available on using multispectral
reflectance data as input into the random forest machine learner
for pigweed soybean discrimination. The objective of this investi-
gation was to test the performance of random forest machine lear-
ner to discriminate soybean from Palmer amaranth and redroot

pigweed, two common pigweeds that interfere in soybean produc-
tion in the southeastern United States. Specifically, the study
focused on using multispectral leaf reflectance data obtained
within the visible, red-edge, near-infrared, and shortwave-
infrared regions of the light spectrum as input variables into the
random forest algorithm and on discriminating the two weeds
from three soybean varieties.

2. Materials and methods
2.1. Plant descriptions

Three Progeny (P) brand LibertyLink (LL) soybean varieties
(P4928LL, P5160LL, and P5460LL Progeny Ag Products, Wynne,
Arkansas) and non-glyphosate resistant redroot pigweed and
Palmer amaranth (Crop Production Systems Research Unit,
USDA-ARS, Stoneville, MS) were grown for the study. Soybean
P4928LL has an indeterminate growth habit (i.e., continuation of
vegetative growth after flowering) with a maturity group of 4.9,
and gray pubescence. Soybean P5160LL and P5460LL have a deter-
minate growth habit (i.e., vegetative growth completed prior to
flowering) and maturity group labels of 5.1 and 5.4, respectively.
Soybean P5160LL and P5460LL have a tawny and a light tawny hair
color; respectively. The soybeans were selected for their differ-
ences in growth habit, maturity level, and leaf pubescence.

2.2. Greenhouse experiment

Two greenhouse experiments were conducted at the Crop
Production Systems Research Unit, United States Department of
Agriculture, Agricultural Research Service, Stoneville, MS facility.
On June 13, 2014, and August 28, 2014, soybean and weed seeds
were planted in plugs containing commercial potting mix
(Pro-Mix, Ultimate Potting Mix, Quakertown, Pennsylvania). Two
weeks after germination, thirty plants of each soybean variety
and weed species were transferred to individual 2 L pots filled with
the commercial potting mix. Plants were watered on three- to four-
day intervals as needed. The potting mix consisted of a slow release
nitrogen, phosphorus, and potassium fertilizer. The greenhouse
was maintained at 28/24 + 3 °C day/night temperature with natu-
ral light supplemented by sodium vapor lamp to provide a 14-h
photoperiod.

2.3. Data collection

Leaf reflectance measurements were obtained with a plant
probe attached to the fiber optic of a full range hyperspectral spec-
troradiometer (FieldSpec 3, PANalytical Boulder, Boulder Co., USA).
The plant probe was equipped with a light source, allowing the
user to acquire reflectance measurements anytime during the
day or night. The device measures a 1 cm area. A leaf clip (PANalyt-
ical Boulder, Boulder Co., USA) was attached to the contact probe,
which had a trigger lock/release gripping system designed to hold
the leaf in place without removing it from the plant or causing
damage to the plant. The leaf clip was equipped with a two-
sided rotating head, with one side having a black panel face and
the other side having a white panel face. The black panel is ideal
for reflectance measurements; the white panel is perfect for trans-
mittance. The black panel was employed in this study.

The spectroradiometer obtained continuous spectra in the
range of 350-2500nm. Its sampling interval and spectral
resolution were 1.4nm and 3 nm, respectively, within the
350-1000 nm spectral range. The sampling interval and spectral
resolution were 2nm and 10nm, respectively, within the
1000-2500 nm spectral range. The proprietary software operating
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the instrument reflectance data to 1nm
wavelengths.

Reflectance measurements were collected from the most
recently matured leaf of each plant. Soybean has a trifoliolate leaf;
therefore, the center leaflet (terminal leaflet) of the most recently
matured leaf was chosen for data collection. At the selected sample
spot of each plant leaf, reflectance measurements were an average
of fifteen readings. Leaf reflectance measurements were obtained
on June 30, 2014 (first experiment) and September 17, 2014 (sec-
ond experiment), when plants were at 15 and 18 day-old stage,
respectively. This growth stage simulates weeds in field conditions
at the time of early postemergence application for weed control.
Measurements were obtained for all plants during the vegetative
growth stage. The spectroradiometer was calibrated with a white
spectralon panel on 15 min. intervals.

resampled the

2.4. Aggregation of spectral bands

The 1nm spectral data were aggregated to sixteen
multispectral bands mimicking those of the Worldview-3 satellite
sensor: coastal (400-450 nm), blue (450-510nm), green
(510-580 nm), yellow (585-625nm), red (630-690 nm), red-
edge (705-745 nm), near-infrared 1 (770-895 nm), near-infrared
2 (860-1040 nm), shortwave-infrared 1 (1195-1225nm),
shortwave-infrared 2 (1550-1590 nm), shortwave-infrared 3
(1640-1680 nm),  shortwave-infrared 4  (1710-1750 nm),
shortwave-infrared 5 (2145-2185nm), shortwave-infrared 6
(2185-2225 nm), shortwave-infrared 7 (2235-2285nm), and
shortwave-infrared 8 (2295-2365 nm) (Digital Globe, 2014). These
bands were chosen because one or more of them were similar to
spectral bands appearing on other ground-based and airborne mul-
tispectral remote sensing systems. Currently, the sixteen selected
bands are the most comprehensive multispectral measurements
available for land and water surveys.

2.5. Deriving and evaluating classification models

The conditional inference version of random forest (cforest) was
used to derive models for classifying the June 30, 2014, and the
September 17, 2014, data into groups. Spectral data obtained in
the same region of the light spectrum are often highly correlated,
which was the case for the spectral bands evaluated in this study.
Several research studies have shown that biased variable
importance rankings are tabulated by the original version of ran-
dom forest if strong correlation exists among predictor variables
(Strobl et al., 2009). Cforest implementation of random forest
was designed to better handle correlation among variables, thus
providing more accurate and unbiased rankings of the variable
importance (Strobl et al., 2009). It employs conditional inference
trees as base learners, compared to random forest, which uses clas-
sification and regression trees as base learners (Hothorn et al.,
2006a; Strobl et al., 2009). Cforest utilizes subsampling without
replacement for constructing unbiased decision trees for the forest;
whereas, random forest uses bootstrap samples to construct its
decision trees. Finally, the cforest algorithm uses the conditional
permutation scheme described by Strobl et al. (2009) to determine
the variable importance ranking.

Models were created for binary classifications, meaning one
soybean variety versus one weed species. Before implementing
the algorithm, the user has to set two parameters: (1) mtry - the
number of randomly preselected variables used in each split and
(2) ntree - the number of trees in the forest. The default values of
five and five hundred were used as the starting point for mtry
and ntree, respectively.

The variable importance ranking was tabulated for each random
forest model per classification. Before accepting the variable

ranking, the user customarily repeats the process employing the
preselected mtry and ntree values and a different seed (i.e., starting
point for random number sequence). Completing this test authen-
ticates the model robustness and stability (Strobl et al., 2009). If
the variable ranking order substantially changed from one run to
the next, then the ntree value was increased by 1000, and the clas-
sification was repeated. This process was duplicated until a stable
ranking was obtained.

Model accuracies were determined by creating and evaluating a
confusion matrix, consisting of user’s, producer’s, and overall accu-
racies and the kappa coefficient on the “out-of-bag samples”
(Congalton, 1991; Foody, 2002). The weeds were considered the
class of interest, otherwise known as the event. Random forest
model development and evaluation was determined with the party
package (Hothorn et al., 2006b; Strobl et al., 2007, 2008) of the R
software [R version 3.1.2 (October 31, 2014) - Pumpkin Helmet).

3. Results
3.1. Classification results

Error matrix results for each classification are shown in Tables
1-3. User’s and producer’s accuracies greater than 93% were
achieved by the random forest algorithm using the multispectral
data as input variables. The lowest per class accuracy was observed
for the Palmer amaranth class in the Palmar amaranth versus
soybean P5460LL classification for the June 30, 2014 data set.
Generally, classification errors occurred when the pigweeds were
misclassified as soybean. Overall accuracies and Kappa values were
equal or greater than 96.7% and 0.93, respectively in both dates.

3.2. Model parameters

Table 4 summarizes the random forest model parameters used
to distinguish the Palmer amaranth and redroot pigweed from the
soybean varieties. The number of classification trees ranged from
500 to 5500. The number of classification trees was increased from
the default value of 500-obtain stable variable importance
rankings.

3.3. Variable importance

Figs. 1-3 illustrate the variable importance rankings of the clas-
sifications. Typically, ten of the sixteen spectral bands were ranked
as important variables in discriminating the pigweeds from the
soybeans. Shortwave-infrared bands were the most important to
the models; whereas, near-infrared, red-edge, and visible (i.e.,
coastal, blue, green, yellow) band rankings were dependent on
classification and date. The red band was not important to the clas-
sification models.

4. Discussion

Using leaf multispectral reflectance data as input, the random
forest algorithm showed excellent potential as a tool to discrimi-
nate Palmer amaranth and redroot pigweed from soybean (Tables
1-3). Palmer amaranth or redroot pigweed was the class of
interest, otherwise known as the event. The user’s accuracy results
indicated most errors were related to the pigweeds being misclas-
sified as soybean (Tables 1-3). Kappa statistic values were equal or
greater than 0.93, representing almost perfect agreement between
the predicted data and the reference data (Landis and Koch, 1977).
It appears that the pubescence color of the soybean leaves had no
influence on classification accuracy of the algorithm.
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Table 1
Error matrix of random forest using the 16-band multispectral leaf reflectance data for Palmer amaranth and redroot pigweed discrimination from soybean variety P4928LL.
Reference
Date Prediction Palmer amaranth Soybean P4928LL Total User’s Accuracy
6/30/2014 Palmer amaranth 29 0 29 100%
Soybean P4928LL 1 30 31 96.8%
Total 30 30
Producer’s accuracy 96.7% 100%
Overall accuracy 98.3% Cohen’s kappa 0.97
Reference
Date Prediction Redroot pigweed Soybean P4928LL Total User’s Accuracy
6/30/2014 Redroot pigweed 29 0 29 100%
Soybean P4928LL 1 30 31 96.8%
Total 30 30
Producer’s accuracy 96.7% 100%
Overall accuracy 98.3% Cohen’s kappa 0.97
Reference
Date Prediction Palmer amaranth Soybean P4928LL Total User’s Accuracy
9/17/2014 Palmer amaranth 29 0 29 100%
Soybean P4928LL 1 30 31 96.8%
Total 30 30
Producer’s accuracy 96.7% 100%
Overall accuracy 98.3% Cohen’s kappa 0.97
Reference
Date Prediction Redroot pigweed Soybean P4928LL Total User’s Accuracy
9/17/2014 Redroot pigweed 29 0 29 100%
Soybean P4928LL 1 30 31 96.8%
Total 30 30
Producer’s accuracy 96.7% 100%
Overall accuracy 98.3% Cohen’s kappa 0.97
Table 2
Error matrix of random forest using multispectral leaf reflectance data for Palmer amaranth and redroot pigweed discrimination from soybean P5160LL.
Reference
Date Prediction Palmer amaranth Soybean P5160LL Total User’s Accuracy
6/30/2014 Palmer amaranth 29 0 29 100%
Soybean P5160LL 1 30 31 96.8%
Total 30 30
Producer’s accuracy 96.7% 100%
Overall accuracy 98.3% Cohen'’s kappa 0.97
Reference
Date Prediction Redroot pigweed Soybean P5160LL Total User’s Accuracy
6/30/2014 Redroot pigweed 29 0 29 100%
Soybean P5160LL 1 30 31 96.8%
Total 30 30
Producer’s accuracy 96.7% 100%
Overall accuracy 98.3% Cohen’s kappa 0.97
Reference
Date Prediction Palmer amaranth Soybean P5160LL Total User’s Accuracy
9/17/2014 Palmer amaranth 29 0 29 100%
Soybean P5160LL 1 30 31 96.8%
Total 30 30
Producer’s accuracy 96.7% 100%
Overall accuracy 98.3% Cohen’s kappa 0.97
Reference
Date Prediction Redroot pigweed Soybean P5160LL Total User’s Accuracy
9/17/2014 Redroot pigweed 29 0 29 100%
Soybean P5160LL 1 30 31 96.8%
Total 30 30
Producer’s accuracy 96.7% 100%
Overall accuracy 98.3% Cohen’s kappa 0.97
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Table 3
Error matrix of random forest using multispectral leaf reflectance data for Palmer amaranth and redroot pigweed discrimination from soybean P5460LL.
Reference
Date Prediction Palmer amaranth Soybean P5460LL Total User’s Accuracy
6/30/2014 Palmer amaranth 28 0 28 100%
Soybean P5460LL 2 30 32 93.8%
Total 30 30
Producer’s accuracy 93.3% 100%
Overall accuracy 96.7% Cohen'’s kappa 0.93
Reference
Date Prediction Redroot pigweed Soybean P5460LL Total User’s Accuracy
6/30/2014 Redroot pigweed 29 0 29 100%
Soybean P5460LL 1 30 31 96.8%
Total 30 30
Producer’s accuracy 96.8% 100%
Overall accuracy 98.3% Cohen’s kappa 0.97
Reference
Date Prediction Palmer amaranth Soybean P5460LL Total User’s Accuracy
9/17/2014 Palmer amaranth 29 1 30 96.7%
Soybean P5460LL 1 29 30 96.7%
Total 30 30
Producer’s accuracy 96.7% 96.7%
Overall accuracy 96.7% Cohen’s kappa 0.93
Reference
Date Prediction Redroot pigweed Soybean P5460LL Total User’s Accuracy
9/17/2014 Redroot pigweed 29 0 29 100%
Soybean P5460LL 1 30 31 96.8%
Total 30 30
Producer’s accuracy 96.7% 100%
Overall accuracy 98.3% Cohen’s kappa 0.97
Table 4

Random forest model parameters used to distinguish Palmer amaranth and redroot pigweed from soybean varieties.

Classification mtry?

ntree (June 30, 2014) ntree (September 17, 2014)

Palmer amaranth-soybean P4928LL
Redroot pigweed-soybean P4928LL
Palmer amaranth-soybean P5160LL
Redroot pigweed-soybean P5160LL
Palmer amaranth-soybean P5460LL
Redroot pigweed-soybean P5460LL

(S ENG RO BT RS, RS, |

3500 4500
1500 500

1500 4500
500 1500
500 1500
1500 5500

a

Shortwave-infrared wavelengths were ranked as the most
important variables used by the models for pigweed soybean dis-
crimination (Figs. 1-3). Water concentration in plant tissues affects
their ability to reflect shortwave-infrared light (Gausman, 1985),
indicating leaf succulence played a role in discriminating Palmer
amaranth and redroot pigweed from soybeans. Our findings con-
curred with Gray et al. (2009) who observed that shortwave-
infrared wavelengths were essential for differentiating soybean,
soil, and six broadleaf weeds. Their study focused on plant canopy
hyperspectral reflectance measurements and principal component
analysis and linear discriminate analysis for crop weed discrimina-
tion; whereas, our study evaluated leaf multispectral data and the
random forest machine learning algorithm to distinguish soybean
and the two selected pigweeds.

Other studies have shown that visible (400-670 nm), red-edge
(680-760 nm), and near-infrared light (770-1290 nm) reflectance
of plant leaves and canopies were important variables for crop
weed discrimination (de Castro et al., 2012; Shapira et al., 2013).
Plant pigments including chlorophyll (i.e., a and b), carotenes,
and xanthophylls, influence visible light reflectance and absorption
of plant leaves and canopies (Gausman, 1985). The combination of

mtry = number of randomly preselected variables; ntree = number of trees used in the classification.

chlorophyll absorption and strong scattering of light by the leaf
internal cellular structure affect the red-edge (680-760 nm) reflec-
tance of plant leaves and canopies (Ray et al., 1993). The internal
leaf structure and multiple leaf layers influence the near-infrared
light reflectance properties of plant leaves and canopies
(Gausman, 1985). In our study, the near-infrared bands were pre-
dominantly more important to the classification models than the
visible bands that often received variable importance scores close
to zero (Figs. 1-3). These findings suggested that the leaf internal
structure was somewhat important to the separation of the weed
and soybean classes and that leaf pigments played a minute role
in the classifications.

Excluding the June 30, 2014, redroot pigweed-soybean P5160LL
and the Palmer amaranth-soybean P5460LL classifications and the
September 17, 2014, redroot pigweed-soybean P4928LL classifica-
tion, the number of decision trees was increased from the default
value of 500 to stabilize the variable of importance rankings
(Table 4). Others have recommended using large number of deci-
sion trees in random forest classifications to achieve stable variable
importance rankings (Liaw and Wiener, 2002; Strobl et al., 2009).
Classification accuracies were not affected when the tree numbers
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Fig. 1. Variable importance rankings of the spectral bands used by the random forest models in the pigweeds versus soybean classifications. PAL-Palmer amaranth, RedPig-
Redroot pigweed, Soy P4928LL-Soybean variety P4928LL, SWIR-shortwave-infrared, NIR-near-infrared, RE-red-edge, G-green, Y-yellow, R-red, C-coastal, and B-blue.

PAL-Soy P5160LL, June 30, 2014
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Fig. 2. Variable importance rankings of the spectral bands used by the random forest models in the weed versus soybean classifications. PAL-Palmer amaranth, RedPig-
redroot pigweed, Soy P5160LL-soybean variety P5160LL, SWIR-shortwave-infrared, NIR-near-infrared, RE-red-edge, G-green, Y-yellow, R-red, C-coastal, and B-blue.

were increased, a characteristic commonly observed with random
forest classifications (Rodriguez-Galiano et al., 2012).

To put this study into perspective, the authors stress that reflec-
tance measurements were obtained from plant leaves and not
plant canopies. The former represents pure spectra. At the canopy

level, leaf angle to the sensor, leaf location in the canopy and inter-
canopy shadowing will affect visible, red-edge, near-infrared, and
shortwave-infrared regions of the light spectrum. Those aspects
may alter to some degree classification accuracy of the random for-
est model and the variable importance ranking. Also, it is impor-
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PAL-Soy P5460LL, June 30, 2014
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Fig. 3. Variable importance rankings of the spectral bands used by the random forest models in the weed versus soybean classifications. PAL-Palmer amaranth, RedPig-
redroot pigweed, Soy P5460LL-soybean variety P5460LL, SWIR-shortwave-infrared, NIR-near-infrared, RE-red-edge, G-green, Y-yellow, R-red, C-coastal, and B-blue.

tant to note that this study focused on using random forest and
multispectral data for soybean weed discrimination; however,
there may be other algorithms that work as well with multispec-
tral data for soybean pigweed discrimination. Overall, this study
indicated that leaf multispectral reflectance data could be used
by the random forest algorithm to differentiate Palmer amaranth
and redroot pigweed from soybean. Additionally, the algorithm
provided general information on which variables were most
important in soybean and pigweed discrimination.

5. Conclusions

In this study, the random forest machine learner and leaf mul-
tispectral reflectance data were explored as tools to discriminate
soybean from Palmer amaranth and redroot pigweed, two weeds
causing yield reductions in soybean throughout the southeastern
United States. The random forest algorithm distinguished the two
weeds from three soybean varieties. Spectral bands sensitive to
water concentration (i.e., shortwave-infrared bands) in plant tis-
sues were essential to the models for weed soybean discrimina-
tion. Findings support further application of the random forest
machine learner along with remotely-sensed multispectral data
as tools for pigweed crop discrimination with future implications
for site-specific management of weeds.
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